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ABSTRACT

The stability of a circular cylindrical shell subjected

to a moving ring load with a constant velocity has

been examined in detail when both longitudinal and

transverse inertia effects are included, using both

the Timoshenko and the Fligge equations. A lower

resonance speed has been found, which apparently

has been concealed in a recent paper.
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NOMENCLATURE

a = mean radius of shell

a, b = see Eq. (27)

al. b = see Eq. (28)

a 2 , b2  = see Eqs. (61) and (62)

"gIs'S E = see.Eqs. (39) and (40)

D.A. = see Eq. (34)

E = Young's modulus

h = shell thickness

p = (1 - V2)j5/XE

P0 = ring load per unit circumference
( •t =t a•/a

t = time

u, w = u/a, w/a

U, w = axial and radial displacements, respectively

V = velocity of ring load

VCR = physical resonant speeds

v V/a

VCR = nondimensionalized resonant speeds

vo, vo = see Eq. (20)

x = xla

R = axial coordinate

xo, xI = see Eq. (52)

z = X- vt
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a E/p(l ,,)

aL, a 2  = see Eqs. (73) and (74)

I' •2 = see Eq. (75)

B2 = 1 -v
2

A = see Eq. (13)

A' - see Eq. (49)

6(z) = Dirac delta function

X = h/a

v = Poisson's ratio

( = Fourier transform variable

p = shell density

0 = vlWe

(•) = Fourier transformed quantity



0] SECTION I

INTRODUCTION

In recent years, the problem of the dynamic response of circular

cylindrical shells has received considerable interest because of their use

in aerospace vehicles. In particular, many investigations have examined

shells subjected to traveling loads: Nachbar [ 1]1 considered the dynamic

response of an infinitely long cylindrical shell to moving discontinuous loads.

Brogan [2] considered the problem of a uniform pressure front moving over

a finite cylindrical shell which was taken to be internally pressurized, but

the resonant modes were not considered and the solution obtained was not

valid for all values of time. Bhuta [ 3] obtained the transient response of

"a finite shell which was not pressurized, but the resonant modes were

studied in detail. It was also pointed out in [ 3] that a critical velocity exists

for a semi-infinite shell for which the deflections become unbounded. The

same critical velocity was obtained by Prieskin [ 4] for an infinitely long

cylindrical shell.

In all of the forementioned investigations, only the axisymmetric

loading was considered. However, in [ 1], viscous damping in the radial

direction was assumed to be present. In [2], [3], and [4], the investiga-

tions concerned the response of undamped shells. Also, [ 1] differs from

the rest in that the acceleration in the axial direction was considered,

whereas in other prior investigations only radial inertia was taken into

account. The critical velocity of [4] due to a bending resonance does not

appear in the solution of [ 1], but rather a much greater critical velocity

due to axial motion resonance appears. The resonance due to bending seems

to have been concealed because of the assumed presence of damping.

Unfortunately, however, as is shown in the present investigation, the

resonance due to bending occurs at a much lower velocity than does the

Numbers in brackets designate References at end of paper.
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resonance due to axial motion and is important for aerospace vehicle design.

The resonant character of the solution was brought out also in [ 3] by having

let the shell length become successively larger and having noted that at the

critical velocity the dynamic loading factor became infinite.

I
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SECTION II

STATEMENT OF PROBLEM AND METHODS OF SOLUTION

It is the purpose of this paper to investigate the dynamic stability and

solve the problem of the dynamic response of an infinitely long cylindrical

shell subjected to a ring load moving with constant velocity, taking into

account the accelerations in both the radial and the axial directions. It is

shown that even when both accelerations are considered, the resonance due

to bending occurs at a lower velocity than the one due to axial motion.

The problem is solved using Timoshenko's equations [51, as in [I]

but without the presence of damping, and Fligge's equations [ 6 ]. The results

of the analyses are compared, and it is found that Timoshenko's equations

suffice for values of the load speed, up to the first critical speed. It is found

that above that speed, there is really no proper or physically meaningful

steady-state solution, as was concluded also in (4 ], and that an initial value

Sproblem should be solved for such speeds. Near the axial resonance, the

effects of shear deformation and rotatory inertia should be included also.

In addition, expressions for dynamic amplification in the deflections are

derived.

The analysis is carried out using Fourier transforms. The resonances

or instabilities are shown by the fact that for certain velocities the inversion

integral fails.to exist.
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Fig. 1. Coordinate and load geometry.
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SECTION III

ANALYSIS

Solution Using Timoshenko Equations

The shell--of thickness h and radius a, and of a material having a

modulus of elasticity E, Poisson's ratio v, and density p--is loaded by a ring

load moving with a constant velocity V, as shown in Fig. 1, and the radial

displacement " is assumed to be positive inward. The axial displacement

and the pressure and axial coordinates are denoted by G, p, and 3, respec-

tively. The equations of motion [51 for the shell are then

Eh ~ v7

I -"v2 x2  a8-/ a-/ 2

and

aEh3  84a h - =a (2-)

12(l -_v) 8;4 1 - V2 a ai -pha•2

Next the following variables

2 2 -X = h/a , = E/p(l - v) , x = ax

= at/a , -u= au , W=aw , (3)

= pXE/(l - v )

are introduced into (1) and (2) to obtain the equations of motion in a

dimensionless form:

82 u aw a 2 ux V ax at 2

-5-



and

2 a4w a8 2 w 
(

_ + w - V -+ -- = P(x t)

For the moving ring load, the pressure is given by

p = P0
6 (x - vt) (6)

where p0 denotes the intensity of the load, 6 the Dirac delta function,

and v the nondimensional speed of the load. The actual speed V of the

load is related to v by

V = av (7)

To seek the steady-state solution, one introduces the transformation

z = x - vt (8)

and sets all quantities to be functions of the new variable z. This

results in

2

(1 -v )u" - vw' = 0 (9)

12

where ( )' d( )/dz.
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Operating with an exponential Fourier transform on (9) and (10) gives

L VP0
2 (11)

- v

and

,.PO
w = - (12)

where

4! -4 4 + 1 -v (13)
12 1(v 2

( Here t is the transform variable, and the transform of a quantity ( ) is
denoted by "). Inverting (11) and (12), one has

_ VPo 0__ _ exp( -Lgz) d4 (14)

u -- (1 - v2) J.•

and

o rexL z) d4 (15)

(

-7-



Determination of Resonant Speeds for Timoshenko Equations

Now the foregoing integrals are well defined except where the

velocity is such that A has a double root on the real axis. The condition

for this to be so is

4 _2 X2•

v - - = 0 (16)

For these values of v, the integrands in (14) and (15) have second-order

poles on the axis of integration, and for such a situation, the integrals

involved do not exist even in the sense of a Cauchy principal value. It will

be shown later in the analysis that such nonexistence of a solution to a

physical problem implies a resonance or an instability in the sense that the

displacements everywhere become unbounded. Values of v for which (16) is

satisfied are the resonant speeds. It will be shown that there is one root
2 1/4near v = (X /3)l and two near v = 1. Actually, there are other roots to

(16) also, but since only positive real roots are of physical significance,

the rest are discarded. The roots can be tabulated easily as functions of

v and X. In most practical problems, X is certainly less than 0. 1 (i. e., a

thin shell is assumed, since the statement X _• 0. 1 implies that the thickness

of the shell is less than 0. 1 of the radius) for it is only in such regimes that

the shell equations are valid. For values of X > 0. 1, it is doubtful if either

Timoshenko's or Fl~igge's equations are valid. Thus, a perturbation solution

in X is a valid way of obtaining the approximate roots of (16). To obtain the
2 1/4root near (X /3), one sets v = vCR1 to be given by

v 4V=Ev0 +E v " (17)VCR 0 1



where E = X/%r3. Substituting in (16) and equating the coefficients of the like

powers of e , one has

vCR1 I[ 4(1 , /)I/2] +. • (18)

Equation (18) is valid when (1 - v 2)1/2 >> 1 V2/4. The maximum value

of v is 0. 5, so that the above relation is always true. In terms of physical

velocity V, (18) gives

a32 Eh Eh 2V2 + (19)
CR1 pa[3(l - v2)]1/2 6pa 2 (l - v2)

The first term of (19) is the square of the bending resonant speed given in

[4], and the additional terms in (19) arise from the consideration of

( • longitudinal inertia in the present investigation. It is apparent from (19)

that the contribution from the longitudinal inertia terms is indeed small.

To obtain the roots of (16) near v = 1.0, one sets v = vCR2 to be

given by

2 2
vCR2 = v0 + v+ . (20)

Substituting from (20) into (16) yields

CR2 =

In terms of physical speed

i2 E Ev 2h 2

E +~ (22)
CR2 +1)3(1 "R P(l - V)+3pa2 --

-9-



Another resonant speed will occur when the constant terms in

&[i.e., 1 - v 2(l - v 2)] defined by (13) equal zero. This situation corre-
sponds to a double root at = 0. Setting the constant term to zero yields

the third critical speed

V2R3 =I - V (23)

In terms of physical speed, (23) gives

2 E (24)
VCR3 = - (

It should be remarked that when v2 = 1, i.e., V 2 Ep(l - v 2), there is

no meaningful solution to the differential equations (9) and (10). Thus,

one can conclude that there are three resonant speeds, given by

1. 2 Eh Eh 2 v2
CR1 pa[3(3 - v2)]1/2 6pa 2 (l - v 2 )

2. _E +CR 2 p(1 V2

3. V2  E
CR3 j

The first resonance, and the one with the lowest speed, evidently corresponds

to bending resonance. The second is a resonance which occurs when the load

speed becomes equal to the plate-wave speed in the shell and is an axial

vibration resonance. The third resonance occurs when the load speed

becomes equal to the bar-wave speed and is also an axial vibration resonance.

It is not clear physically as to why the bar-wave speed should enter at all. In

fact, for'load speeds of the order of magnitude of either the bar- or the

-10-



plate-wave speed, it is doubtful that the equations of motion without the

effects of shear deformation and rotatory inertia are valid.

It is obvious from the manner in which the instabilities have been

obtained here that these critical or resonant speeds depend only on the

velocity of the pressure wave and not upon the manner in which the pressure

may be changing with z above and behind the pressure wave front.

Evaluation of Displacements for Timoshenko Equations

The integrals (14) and (16) will be evaluated next. It is obvious that

the integral in (14) can be obtained from (15) because

w' W (25)1 - v

Hence, it suffices to evaluate (15), which in explicit terms is

w(Z) = P 4 exp(-Lgz) d . (26)
O.D. ,44/4- v 2 42 + 1 - [v 2 /(1 _ v 2 )]

First, one considers the case when v < vCRI. The roots of the

denominator of the integrand are given by

2 2v2  z / V v4212
* L-t- - v

F2 1 - v (27)

-a* Lb

Since v < vCR, b is a real and positive number. Then the roots are

located at

Ia , • (28)
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where

a1 = 1 -v-l/ + l (29)

and

b -• (30)

For z > 0, it suffices to integrate along the real axis and a semicircular

contour in the lower-half plane, picking up the contributions from the poles

at • = *a l /4  - Lbl/4. Performing the indicated integration results in

PO  exp(-ab1/H•4) ; s 1

w - vZ/(1.vZ)]1I/j..Z/(,~Z)._
4 /,Z]1IZ I + b•- sn , Sao (31)

From symmetry considerations, w is an even function of z; hence

P0  exp(zb 1 
4 ) )

w -I -[l vZl( 2-V/)] I [o-.v2 (1-vZ)-vA1
2]1 2z cou-•-, b1 sin , - <0 (321

The maximum value of w occurs at z = 0 and is given by

w1([ - (V2 /1 V 2 )1 / + VIE 11/2
max 2=r V -/(1 - v2)] l/2[l v2 /(1 - v2 ) - v4 / 2] (33)

The dynamic amplification factor is defined here as the ratio of the

maximum dynamic deflection to the maximum static deflection (i.e , the

-12-
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deflection that would occur when v = 0). Hence, the dynamic deflection

(D. A.) is given by

D.A. .2A -1 , va2)11/2 + v2/, 11/2(l -V2)3/4

. 1 - v2/(1 - v2 )] 1/2(1 - v2/(l - v2) - V4 /,E 2]1/2 (34)

The dynamic amplification evidently becomes unbounded as v approaches

one of the critical velocities.

To uncouple the effects of axial motion from the effects of radial

motion, it suffices to neglect the term v( 8 u/ax) in (5). The term v( 8 w/Ox)

is retained in (4) so that the axial displacement u can be obtained. The

results of this approximation can be analyzed from the theory previously

considered in the present paper. The neglect of v(au/ax) removes the term
2 2 1-v (1 - v )I in the equation for A, viz., Eq. (13). Hence, by this theory

there are only two resonant speeds present, and they are given by(

2 2 Ehv = E (35)
CRI VCR1 a(l - v2)4-3

and

2 2 E (36)
CR2 =I oCR2 p(l -v 2 )

The first resonant speed given by (35) agrees with the one of [4] up to a

factor of (1 - v2)1/2. The solution for the displacement now becomes

p0  ex(-Zb1 '~ /I ýfza 1  za1
o eac•Cos-+ si z 2ý 0 (37)

21Tt [1 (v 4 /, )]1/2 IC°S.+b 1 sin z]1, 0

and

-13-



p0  exp(jb I/4T) za za11 (8W= coo •s _o (s
2,, (I 42]12 1 -_ bI ain z~-- 5 z0 (8

where

a + +4 /2 39

and

b1 =( -4)/ (40)

and v < VCRI. The maximum deflection again occurs at z = 0, and is

Wmax .z-J (1 - (vZ/E)] l/Z 4

The dynamic amplification factor is obtained from

1(41)
D.A. =(42)

[I - (vZ/)11/2

The principal differences in the expression given above are in the neglect

of the v /(1 - v ) terms. The first resonant speed vCR1, corresponding

to the case where the axial coupling is not neglected, differs from the case

where the axial coupling is neglected by terms of order h/a. But because

h/a is usually quite small, this approximation is certainly a valid one. Also,

the resonance near the bar-wave speed disappears if the axial coupling is

neglected. However, since the shell equations probably are not valid in this

regime of the velocities, the difference is not of much importance.

-14-



0
Solution Using Fligge Equations

The two Timoshenko solutions will be compared now with the solution

obtained from the Flugge equations ([6], pp. 209 - 219), viz.,

2 2
(1v )u"l + vw' - 1-w"' W 0 (43)

4

2 2. ( ).4
Vu -- u +4w +v2wi + ( + 4 p (44)

Here w is measured positive outward, p is positive when it is a suction

rather than a compression, and u is measured positive in the positive

x-direction. All quantities in (43) and (44) are taken to be functions of

z = x - vt, and the notation of Fliigge is changed to agree with that of

Timoshenko.

Operating with Fourier transforms on (43) and (44) yields

~2( 2% (5

and

-4 + u- + g + + •J= P0  
(46)

where p, as before, has been taken.-to be p0
6 (z) for the traveling ring load.

Solving for V and ', one has

2 2
[V + (4 /4)4 1po

u (47)

-15-o



and

2 (1-V2 P
W= (48)

where

a, (= 4 v + a -(1- Vz)[I_ g4 -vzg + (I+ ( )1 (49)

Again it suffices to study only w, since u can be obtained from w by using

(43). Thus, one must consider the integral

P0 (I - v 2 ) 2 e (gzd
W = 2(50)

Determination of Resonant Speeds for Fligge Equations

As before, the integral will not exist for values of v such that there

are second-order poles on the real axis. The condition for this to be so is

v2(1 - v2) + e 21_v2 2[ +--(I _ v2) _-V2] = 0 (51)

Equation (51) is a higher degree equation than (16). The extra root

is located at a value of v greater than 1.0 and, as such, is not of much

physical importance since it is unlikely that the shell equations without

shear deformation and rotatory inertia are valid for values of v in this

-16-



range. As in the Timoshenko equations, there is a root near v r.. Setting
v2 = 2x0  x gives x 0 = (1 - v2)1/2 and xI = (-1/2)(v + v ) Hence,

v 2 =.[¶/T I-f .(v +v2)? + • (52)

This result compares well with the result from the use of the Timoshenko

equations with the axial coupling, viz.,

obtained from (18). The critical physical speed is given by

V2 E h I (v + V Z)E h 2

-- ++ ) (54)P[301-v 2)] 1/2 6 P(l - V2 ) a2

Again, the first term of (54) agrees with [4] . The two roots greater than

unity are very close together, differing from unity by terms of order e and
4

from each other by terms of order E .They will not be investigated here,

since their existence is doubtful, because when the equation of motion was

derived, terms of order e2 were neglected. Hence, any term of order

greater than 1 should be under suspicion. Dropping terms of order greater

than e from (51) gives

v4(1 - v2 )2 + VE 2v 2(1 - v2) - £2(1 - v 2)(1 - v2 - v2) = 0 (55)

The meaning of the double root of &W(4) near v = 1 is now clear: It arises

from the factor (I - v 2) common to all terms of (55). The differential

equations themselves predict a resonance at this value of v in the axial mode.

-17-



Canceling the factor (1 - v ) yields

v 4 (l - v 2 ) -4
2r1 - 2 - (1 + v)v 2 ] = 0 . (56)

The corresponding equation from the Timoshenko equations from (16) is

v4 - 2 4 2(1 - v2 _ v2 0 (57)

The root near v = 4 is unaffected, but the root near v 1 now becomes

• 2 )2E 2
v=1 + (I + ) (58)

which differs from the results of the Timoshenko equations by a term of
2

the order of c . The Timoshenko result is given by (21).

Finally, there is one resonance which will occur if the constant term

in (49) disappears: There would be a second-order pole at the origin in the

integrand for w. The condition that the constant term be zero is

2 v2
v = 1-

(1 + E 2/4) (59)

221
ftl- V2 + V 2,J

This value of v will always be slightly less than unity.

Evaluation of Displacements for Fliigge Equatqge

The integral for w will now be evaluated. The procedure and results

are similar to those for the Timoshenko theory. The terms of order greater

-18-
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than 1 2 will be retained until the end of the analysis. For v < vCR, there

are four simple poles located at

where 2(l 2 2 2 12 2 (60

w h e r e - , 2 / 4 p 2 )( 1 - .v 2 / 2 + 2 /4 )] 1 / 2 + (v 2 1 , + w ZV ) (6 1 )
2 (1 - (2/402)

2 2 2 2 2 1/2 22

2 [(1 -,/4p)(1 -v 2/3 + */4)] -(v2/ +v,/2f3) (62)2 (1 2/4p')

and

2 = 1 v2 (63)

As before, the integral for w is an even function of z and the integral for

u is an odd function of z. For z > 0, the use of a semicircular contour

in the lower-half plane is made in evaluating (50). The result of the

integration is

PO exp(-zb2 /NJ;)
2 .r(1 - E/24p2)(1 - v2 1/ 2 + E 2/4) - (v 2 /E + vE /2p2)2] 172

2/42)1/2 a ooo"'-)+ b sin z >0 (64)(1 - V2/o2 +,,2/4)1/2 2  2

-19-



For z < 0, one substitutes -z for z in (64). The maximum deflection again

occurs at z = 0 and is given by

P I I l[( - .,/40•)(1 - VZ/0 2 + , 2/4)] 1•/2 + (vZ/4 + v, /202)11/2 (65)
Wmax Wez (I - v z ÷ + Z/4)I'Z [(I Z/ 4 PZ)( 1 - vl/fZt + ,'4) - (vl/t. +v /2Z0?Z)Z] 1Z

The maximum static deflection is obtained by putting v = 0 into (65) and

is given by

WPO z 1 . (66)Max static = 4 (1- vZ +£zI4)IIZ f[(1 -,Z/ 4 )(1 - vZ+4Z/4)]l /7Z

The dynamic amplification factor, as defined earlier, is

S_/41 "2/4)1l - v2 + ./4 1/2/4 1 /.11/2

D. A. = (67)
(1- V /A + 4 /4) 1[(l /0)1-v/1+,'/) v/,fg11v 2

Next, the powers of E higher than first will be neglected. However,

this must be done with caution since the order of magnitude of v is not known

precisely. It is known that v is at least of the order of 'r but could be of

higher order in E . To carry out this procedure, one sets v/N1e = 0 and

carries 0 in all terms, assuming 0 is of order one. The actual procedure
2

then is to carry only first powers of e , since a factor of c is already taken

out by setting 0 = v/4. The results are

a 2 [(1 V 2)- ( - 2 )to2] 1/2 + 02(1 -E,2) +1/2 (68)
a2 1 -to z

-20-
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b 2((l - v)2 (2 -v 2,)40] 21/2 -2(1. ,02).-/2 (69)z I - 402

PO' exp(-zbI/ -. (r -( ) 1/2
w 2 )11 . - 0, - f[(2 + V - Z)0Z - 206111/z[(1 .,Z) .,E2]1/2

X(a 2 cos -2 + b) sin z (70)

0 O -vZ) - . (2 - v2)02] 1/2 + 02 + [(v/Z) - It 1 1/2(l - -E)(7)

mr ax (1 _ V 2  Z E ( - 4 _ [(2 + V + Z)2Z - 261 1 (71)
'122 2/2 /21/

D.A. - )(l -V 2)M(1 -V )1/2 - vE/21/2 (72)
(-(1 -V G-)/- 1[(l - C-2 -vz)fZlI2z - -- •(V/2)-1£j 11  "

Response in the Supercritical Range

For values of v between the first and second resonances, given by
(19) and (22), respectively, the integral (15) defining w can also be evaluated.

In this case, there will be four simple poles, all on the real axis and located

at= cal, * a2. Only the Timoshenko solution will be discussed for this

case. The poles are given by

+ 4 2( V 2\]1/2
2 va -V + f (73)

and

= v + v4-1 f (74)



The integral (15) then is defined in the sense of a Cauchy principal value

and is

0 1Zz[sin (• 2z- sin (31 "z)
w 8 IV'-4. '(1.-V,/Oz)]• [ CL2 CL1 JI I > (

where -1= (2/1 )aI and"2 = (2/4 )a2. The solution for z <0 is obtained by

setting -z for z in (75).

The physical meaning of the solution (75) is not at all clear. The

solution predicts that both the deflection and the slope are zero under the

load and, thus, supplies an utterly improbable result; such a result does

not appear to be physically realizable. It is felt that for values of v in

this range, an initial value problem should be solved, since it is known

[7] that the steady-state problem is an artificial one. Values of v should

really be derived from a transient solution by allowing time to become

unboundedly large. This problem is beyond the scope of the present

investigation. For a related analysis, the reader is referred to [8].
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SECTION IV

SUMMARY

The stability of a circular cylindrical shell subjected to a moving ring

load with a constant velocity has been examined in detail when both longitu-

dinal and transverse inertia effects are included, using both the Timoshenko

and the Fltigge equations. It has been found that the resonance due to bending

occurs at a lower velocity than that reported in [ I]. The resonance due to

bending is concealed in the solution of [ 1] because of the assumed presence

of viscous damping in the radial direction. However, a bending resonance

occurs at a much lower velocity than that in [ 1] and is of importance for

design of aerospace vehicles. The instabilities have been obtained in the

present paper using Fourier transforms without obtaining the entire solution.

The response of the shell is obtained in the subcritical range for Timoshenko

and FlUgge equations. Expressions for the dynamic amplification in the

deflection have been given. The critical speeds obtained by using Flugge

equations differ by only a small amount from those given by the Timoshenko

equations.

A formal solution for the response in the supercritical range has been

obtained for the Timoshenko equations. The formal solution does not appear

to be physically meaningful. Therefore, it is felt that an initial value problem

should be solved, including the effects of shear deformation and rotatory

inertia, for values of velocity in the supercritical range.
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